Loading...
Loading...
Loading...
Loading...
Loading...
Loading...
Loading...
Loading...
Loading...
Loading...
Loading...
Loading...
Loading...
The following are a few FAQs to provide an insight about renaming the product from Virtual Server(s) to Dedicated Core Server(s).
The name change is part of our ongoing efforts to better reflect the performance and benefits of our Virtual Machines. "Dedicated Core Servers" emphasizes the dedicated nature of the compute resources assigned to each instance, ensuring consistent performance and increased reliability.
No, there won't be any changes in the features or specifications of the product. The only update is the product name from "Virtual Servers" to "Dedicated Core Servers".
The underlying technology and capabilities of the Virtual Machines remain the same. The primary difference lies in the name. With "Dedicated Core Servers," you can still expect virtualized environments but with the added emphasis on dedicated resources per instance.
There will be no changes to the pricing structure due to the name update. The costs and billing for our Virtual Machines, now known as "Dedicated Core Servers," will remain the same as they were for "Virtual Servers."
Yes, "Dedicated Core Server" instances are isolated from one another. Each instance operates independently, with dedicated CPU cores, memory, and storage, ensuring a high level of performance and security.
Existing users of "Virtual Servers" will experience no functional changes or disruptions due to the name update. Your current virtual server instances will be referred to as "Dedicated Core Server" instances from now on.
Yes, you can continue to use the same APIs and tools that were used to manage regular virtual servers for the newly renamed Dedicated Core Servers.
No, as a user, you do not need to take any action. The name change is purely cosmetic, and your existing configurations and access to your instances will remain unchanged.
Yes, we will update the user interface and API documentation to reflect the new name "Dedicated Core Servers". Rest assured, the changes will be cosmetic, and the functionality will remain consistent.
Absolutely! You can continue to create and manage multiple "Dedicated Core Server" instances as per your requirements, just as you did with "Virtual Servers."
For more information or support, you can refer to our documentation on the "Dedicated Core Server" product page on our documentation portal. Additionally, our customer support team is available to assist you with any questions or concerns you may have.
August 18
This is solely for informational purpose and does not require any action from you. IONOS has renamed Virtual Server(s) to Dedicated Core Server(s). This change does not impact the functionality of the product in any manner. As a result, the documentation portal now reflects the product name changes. For more information, see Product Renaming FAQs.
Dedicated Core Servers that you create in the DCD are provisioned and hosted in one of IONOS physical data centers. Dedicated Core Servers behave exactly like physical servers. They can be configured and managed with your choice of the operating system. For more information about creating a Dedicated Core Server, see Create a Server.
Boot options: For each server, you can select to boot from a virtual CD-ROM/DVD drive or from a storage device (HDD or SSD) using any operating system on the platform. The only requirement is the use of KVM VirtIO drivers. IONOS provides a number of ready-to-boot images with multiple versions of Microsoft Windows and different Linux distributions, including Red Hat Enterprise Linux.
Secure your data, enhance reliability, and set up high-availability scenarios by deploying your Dedicated Core Servers and storage devices across multiple Availability Zones.
Assigning different Availability Zones ensures that servers or storage devices reside on separate physical resources at IONOS.
For example, a server or a storage device assigned to Availability Zone 1 resides on a different resource than a server or storage device assigned to Availability Zone 2.
You have the following Availability Zone options:
Zone 1
Zone 2
A - Auto (default; our system automatically assigns an Availability Zone upon provisioning)
If the capacity of your Virtual Data Center no longer matches your requirements, you can still increase or decrease your resources after provisioning. Upscaling resources allows you to change the resources of a Dedicated Core Server without restarting it, permitting you to add RAM or NICs ("hot plug") to it while it is running. This change allows you to react to peak loads quickly without compromising performance.
After uploading, you can define the properties for your own images before applying them to new storage volumes. The settings must be supported by the image, otherwise, they will not work as expected. After provisioning, you can change the settings directly on the storage device, which will require a restart of the server.
The types of resources that you can scale without rebooting will depend on the operating system of your VMs. Since kernel 2.6.25, Linux has LVO modules installed by default, but you may have to activate them manually depending on the derivative. For more information, see Linux VirtIO page.
For IONOS images, the supported properties are already preset. Without restarting the Dedicated Core Server, its resources can be scaled as follows:
Upscaling: CPU, RAM, NICs, storage volumes
Downscaling: NICs, storage volumes
Scaling up is the increase or speed up of a component to handle a larger load. The goal is to increase the number of resources that support an application to achieve or maintain accurate performance. Scaling down means reducing system resources, irrespective of whether you have used the scaling up approach. Without restarting the Dedicated Core Server, only upscaling is possible.
CPU Types: Dedicated Core Server configurations are subject to the following limitations, by CPU type:
AMD CPU
Intel® CPU
*Additional RAM sizes are available on request. To increase the RAM size, contact your sales representative or customer support.
A single Intel® physical core with Hyper-Threading Technology is exposed to the operating system of your Dedicated Core Server as two distinct “logical cores”, which process separate threads.
RAM Sizes: Because the working memory (RAM) size cannot be processed during the initial configuration, newly provisioned servers with more than 8 GB of RAM may not start successfully when created from IONOS Windows images.
Live Vertical Scaling: Linux supports the entire scope of IONOS Live Vertical Scaling, whereas Windows is limited to CPU scaling. Furthermore, it is not possible to use LVS to reduce storage size after provisioning.
With IONOS Cloud Compute Engine, you can quickly provision Dedicated Core servers and vCPU Servers. Leverage our user guides, reference documentation, and FAQs to support your hosting needs.
The following sections have been renamed in the documentation portal:
Compute Engine is now called Compute.
Virtual Machines is now called Compute Engine.
Virtual Server(s) is now called Dedicated Core Server(s). This change does not impact the functionality of the product in any manner. As a result, the documentation portal now reflects the product name changes. For more information, see Product Renaming FAQs.
A user with full root or administrator access rights can create a vCPU Server. A vCPU Server, once provisioned, retains all its settings, such as resources, drive allocation, password, etc., even after a restart at the operating system level. A vCPU Server is deleted from your only when you delete it from the DCD. For more information, see .
Prerequisites: Make sure you have the appropriate privileges. Only contract administrators, owners, and users with the Create Data Center privilege can set up a . Other user types have read-only access and cannot provision changes.
1. Drag the vCPU Server element from the Palette onto the Workspace.
The created vCPU Server is automatically highlighted in turquoise. The Inspector pane allows you to configure the properties of this individual vCPU instance.
2. In the Inspector pane on the right, configure your vCPU Server in the Settings tab.
Preset: Select an appropriate configuration from the drop-down list. The values S, M, L, XL, and XXL contain predefined vCPU-to-RAM ratios. You can always override the values to suit your needs and the Preset automatically changes to Custom when you edit the predefined ratio indicating that you are no longer using the predefined ratio.
RAM: Specify RAM size; you may choose any size between 0.25 GB to 240 GB in steps of 0.25 GB. This setting can be increased after provisioning.
Ad-hoc Key: Copy and paste the public part of your SSH key into this field.
Drag a storage element (HDD or SSD) from the Palette onto a vCPU server in the Workspace to connect them together. The highlighted vCPU will expand with a storage section.
Click the Unnamed HDD Storage to highlight the storage section. Now you can see new options in the Inspector pane on the right.
Storage type cannot be changed after provisioning.
Enter a name that is unique within your VDC.
Select a zone in which you want the storage device to be maintained. When you select A (Auto), our system assigns the optimal Zone. The Availability Zone cannot be changed after provisioning.
Specify the required storage capacity. You can increase the size after provisioning, even while the vCPU Server is running, as long as its operating system supports it. It is not possible to reduce the storage size after provisioning.
You can select one of IONOS images or snapshots, or use your own. Only images and snapshots that you have access to are available for selection. Since provisioning does not require you to specify an image, you can also create empty storage volumes.
Authentication
Set the root or administrator password for your vCPU according to the guidelines. This is recommended for both operating system types.
Select an SSH key stored in the SSH Key Manager.
Copy and paste the public part of your SSH key into this field.
Select the storage volume from which the vCPU is to boot by clicking on BOOT or Make Boot Device.
Provision your changes. The storage device is now provisioned and configured according to your settings.
Alternative Mode
When adding a storage element using the Inspector, select the appropriate checkbox in the Add Storage dialog box. If you wish to boot from the network, set this on the vCPU: vCPU in the Workspace > Inspector > Storage.
It is recommended to always use VirtIO to benefit from the full performance of InfiniBand. IDE is intended for troubleshooting if, for instance, the operating system has no VirtIO drivers installed. In this case, Windows usually displays a "blue screen" when booting.
After provisioning, the Live Vertical Scaling properties of the selected image are displayed. You can make changes to these properties later, which will require a reboot. You can set the properties of your uploaded images before you apply them to storage volumes in the Image Manager.
(Optional) Add and configure further storage elements.
(Optional) Make further changes to your data center.
Provision your changes. The storage device is now provisioned and configured according to your settings.
To assign an image and specify a boot device, you need to add and configure a storage element.
Click on CD-ROM to add a CD-ROM drive so that you can use ISO images to install and configure an operating system from scratch.
Set up a network by connecting the vCPU Server to other elements, such as an internet access element or other vCPU Server through their NICs.
Provision your changes.
The vCPU Server is available according to your settings.
At IONOS, we maintain dedicated resources for each customer. Hence, you do not share your physical CPU with other IONOS clients. For this reason, the vCPU Server switched off at the operating system level, still incurs costs.
You can shut down a vCPU Server completely via the DCD and deallocate all its resources to avoid incurring costs. A vCPU Server deallocated this way remains in your infrastructure while the resources are released and can then be redistributed.
Shutting down a vCPU Server at the operating system level alone does not deallocate the resources or suspend the billing. Regardless of how you shut down the vCPU Server, you can restart it only via the DCD.
A reset forces the vCPU Server to shut down and reboot but may result in data loss.
1. Choose a vCPU Server. From the Settings tab in the Inspector pane, select Power > Stop.
2. In the dialog box that appears, confirm your action by selecting the appropriate checkbox and clicking Apply STOP.
3. Provision your changes. Confirm the action by entering your password.
Result: The vCPU Server stops and billing is suspended.
1. Choose a vCPU Server. From the Settings tab in the Inspector pane, select Power > Start.
2. In the dialog box that appears, confirm your action by selecting the appropriate checkbox and clicking Apply START.
3. Provision your changes. Confirm the action by entering your password.
Result: The chosen vCPU Server is booted. A new public IP address is assigned to it depending on the configuration and billing is resumed.
1. Choose a vCPU Server. From the Settings tab in the Inspector pane, select Power > Reset.
2. (Optional) In the dialog box that appears, connect using the Remote Console and shut down the vCPU Server at the operating system level to prevent data loss.
3. Confirm your action by selecting the appropriate checkbox and clicking Apply RESET.
4. Provision your changes. Confirm the action by entering your password.
Result: The vCPU Server shuts down and reboots.
1. In the Workspace, select the required vCPU Server and use the Inspector pane on the right.
If you want to make changes to multiple vCPU Servers, select the data center and change the properties in the Settings tab.
2. Modify storage:
3. In the Workspace, select the required vCPU Server and increase the CPU size.
4. Provision your changes. You must set the new size at the operating system level of your vCPU Server.
Result: The size of the CPU is adjusted in the DCD.
When you no longer need a particular vCPU Server, with or without the associated storage devices, in your cloud infrastructure, you can remove it with a single mouse click or via the keyboard.
To ensure that no processes are interrupted, and no data is lost, we recommend you turn off the vCPU Server before you delete it.
1. Select the vCPU Server in the Workspace.
2. Right-click and open the context menu of the element. Select Delete Server.
2. You may also select the element icon and press the DEL key.
3. In the dialog box that appears, choose whether you also want to delete storage devices that belong to the vCPU Server.
4. Provision your changes.
Result: The vCPU Server and its storage devices are deleted.
When you delete a vCPU Server and its storage devices, or the entire data center, their backups are not deleted automatically. When you delete a Backup Unit, the associated backups are also deleted.
Prerequisites: Prior to setting up a virtual machine, please make sure you have the appropriate privileges. Only contract owners, administrators, or users with the Create Data Center privilege can set up a . Other user types have read-only access and can't provision changes.
The is used to connect to a when, for example, no is available. You must have the root or administrator password for this type of log-in to the server.
Prerequisites: Make sure you have the appropriate permissions. Only contract owners, administrators, or users with access rights to the data center can connect to a server. Other user types have read-only access and can't provision changes.
Start the Remote Console from the server.
Open the data center containing the required server.
In the Workspace, select the server.
In the Inspector, choose Remote Console or select Remote Console from the context menu of the server.
Start the Remote Console from the Start Center (contract owners and administrators only).
Open the Start Center: Menu Bar > Data Center Designer > Open Start Center
Open the Details of the required data center. A list of servers in this data center is displayed.
Select the server and click Open Remote Console.
Remote Console version matching your browser opens; you can now log on to the server with root or administrator password.
Use the Send Key Combo button on the top right of the Remote Console window to send shortcut key combinations (such as CTRL+ALT+DEL).
Launch this Remote Console window again with one click by bookmarking its URL address in your browser.
For security reasons, once your session is over, always close the browser used to connect to with this bookmark.
is a software package that automates the initialization of during system boot. When you deploy a new Linux server from an , cloud-init gives you the option to set default user data.
User data must be written in shell scripts or cloud-config directives using YAML syntax. You can modify IONOS cloud-init's behavior via user-data. You can pass the user data in various formats to the IONOS cloud-init at launch time. Typically, this happens as a template, a parameter in the CLI, etc. This method is highly compatible across platforms and fully secure.
Compatibility: This service is supported on all public IONOS Cloud Linux distributions. You may submit user data through the or via . Existing cloud-init configurations from other providers are compatible with IONOS Cloud.
Limitations: Cloud-init is available on all public Linux images supplied by IONOS Cloud. If you wish to use your own Linux image, please make sure that it is cloud-init supported first. Otherwise, there is no guarantee that the package will function as intended. Windows images are currently out of scope; adding them may be considered at a later stage.
Provisioning: Cloud-init can only be set at initial provisioning. It cannot be applied to instances that have already been provisioned. Settings cannot be changed once provisioned.
Laptops: When using a laptop, scroll down the properties panel of the block storage volume that you want to create and configure, as additional fields are not immediately visible on a small screen. Clout-Init may only become visible when an supported image has been selected.
The following table demonstrates the use of cloud-config and user-data scripts. However, the cloud-init package supports a variety of formats.
Data Format | Description |
---|
Log in to the DCD with your username and password.
In the Workspace, create a new virtual instance and attach any storage device to it.
Select the storage device and from the Inspector pane associate an Image with it.
To associate a private image, select Own Images from the drop-down list.
To associate a public image, select IONOS Images from the drop-down list. Once you choose an image, additional fields will appear in the Inspector pane.
Enter a Password. It is required for Remote Console access. You may change it later.
(Optional) Upload a new SSH key or use an existing file. SSH Keys can also be injected as user data utilizing cloud-init.
(Optional) Add a specific key to the Ad-hoc SSH Key field.
Select No configuration for Cloud-Init user data and the Cloud-Init User Data window appears.
To complete setup, return to the Inspector pane and click Provision Changes.
Using shell scripts is an easy way to bootstrap a server. The code creates, installs, and configures our CentOS web server in the following example. It also rewrites the default index.html file.
Note: Allow enough time for the instance to launch and run the commands in your script, and later verify if your script has completed the tasks you intended.
The following script is an example of how to create a swap partition with second block storage using a YAML script:
The following script is an example of how to resize your file system according to the chosen size of the block storage. It will also create a user with an SSH key using a cloud-config YAML script:
The cloud-init output log file (/var/log/cloud-init-output.log
) captures console output. Depending on the default configuration for logging, a second log file exists within /var/log/cloud-init.log
. This provides a comprehensive record based on the user data.
The cloud API offers increased convenience if you want to automate the provisioning and configuration of cloud instances. Enter the following details:
Name: Enter the userData.
Type: Enter the type in the form of a string.
Description: The cloud-init configuration for the volume as base64 encoded string. The property is immutable and is only allowed to be set on a new volume creation. It is mandatory to provide either public image
or imageAlias
that has cloud-init compatibility in conjunction with this property.
The following script is an example of how to configure userData using curl:
You can enable IPv6 on Dedicated Core servers and vCPU Servers when you create them or after you create them.
You can set up IPv6 to improve the network connectivity for your virtualized environment. By setting up IPv6 for your Dedicated Core servers and vCPU Servers, you can ensure that they are accessible to IPv6-enabled networks and clients.
Prerequisites: Prior to enabling IPv6, make sure you have the appropriate privileges. New VDC can be created by the contract owners, admins, or users with create VDC privilege. The number of bits in the fixed address is the prefix length. For Data Center IPv6 CIDR, the prefix length is /56.
To enable IPv6 for Dedicated Core servers, connect the server to an IPv6-enabled Local Area Network (LAN). Select the Network option on the right pane and fill in the following fields:
Name: It is recommended to enter a unique name for this Network Interface Controller (NIC).
MAC: This field is automatically populated.
LAN: Select an IPv6 enabled LAN.
Firewall: Specify whether you want to enable or disable the firewall. For enabling the firewall, choose Ingress to create flow logs for incoming traffic, Egress for outgoing traffic, or Bidirectional to create flow logs for all traffic.
Flow Log: Select + to add a new flow log. Enter name, direction, action, target S3 bucket, and select + Flow Log to complete the configuration of the flow log. It becomes applied once you provision your changes.
IPv4 Configuration: This field is automatically populated. If Dynamic Host Configuration Protocol (DHCP) is enabled, the Internet Protocol version 4 (IPv4) address is dynamic, meaning it can change while the Dedicated Core server is operational or in the case of a restart. Add additional public IP addresses in Add IP. It is an optional field.
IPv6 Configuration: You can populate a NIC IPv6 CIDR block with prefix length /80 or allow it to be automatically assigned from the VDCs allocated range, as seen in the screenshot below. Add additional public IP addresses in Add IP. It is an optional field.
To enable IPv6 for vCPU Servers, connect the server to an IPv6-enabled Local Area Network (LAN). Select the Network option on the right pane and fill in the following fields:
Name: It is recommended to enter a unique name for this Network Interface Controller (NIC).
MAC: This field is automatically populated.
LAN: Select an IPv6 enabled LAN.
Firewall: Specify whether you want to enable or disable the firewall. For enabling the firewall, choose Ingress to create Flow Logs for incoming traffic, Egress for outgoing traffic, or Bidirectional to create Flow Logs for all traffic.
Flow Log: Select + to add a new Flow Log. Enter name, direction, action, target S3 bucket, and select + Flow Log to complete the configuration of the flow log. It becomes applied once you provision your changes.
IPv4 Configuration: This field is automatically populated. If Dynamic Host Configuration Protocol (DHCP) is enabled, the Internet Protocol version 4 (IPv4) address is dynamic, meaning it can change while the vCPU Server is operational or in the case of a restart. Add additional public IP addresses in Add IP. It is an optional field.
IPv6 Configuration: You can populate a NIC IPv6 CIDR block with prefix length /80 or allow it to be automatically assigned from the VDCs allocated range, as seen in the screenshot below. Add additional public IP addresses in Add IP. It is an optional field.
Note:
IPv6 CIDR assigned to LANs(/64) and NICs(/80 and /128) must be unique.
You can create a maximum of 256 IPv6-enabled LANs per VDC.
can be generated and used on macOS or Linux if both OpenSSH and the ssh-keygen command-line tools are installed. OpenSSH is a collection of tools for establishing to remote servers, while ssh-keygen is a utility for generating SSH keys.
An SSH key is composed of two files. The first is the private key, which should never be shared. The other is a public key that enables you to access your provisioned Cubes. When you generate the keys, you will use ssh-keygen to store them in a secure location so that you can connect to your instances without encountering the login prompt.
Manually generate SSH keys when working with OpenSSH via the Terminal application by following the steps below.
Enter the following command below into the Terminal window and press ENTER.
The key generation process is initiated by the command above. When you run this command, the ssh-keygen utility prompts you for a location to save the key.
Accept the default location by pressing the ENTER key, or enter the path to the file where you want to save the key /home/username/.ssh/id_rsa
.
If you have previously generated a key pair, you may see the following prompt below. If you choose to overwrite the key, you will no longer authenticate with the previous key that was generated.
Enter the passphrase that will be used to encrypt the private key file on the disk. You can also press ENTER to accept the default (no passphrase). However, we recommend that you use a passphrase.
Enter your passphrase once more.
After you confirm the passphrase, the public and private keys are generated and saved in the specified location. Thus, the confirmation will look like this:
You can copy the public key to your clipboard by running the following command:
Default keys
Ad-hoc SSH Keys.
Ad-hoc SSH keys, on the other hand, are SSH keys that you only use once and do not intend to save in the SSH Key Manager for future use.
The DCD's SSH Key Manager allows you to save and manage up to 100 public SSH keys for SSH access setup. This saves you from having to copy and paste the public part of an SSH key from an external source multiple times.
Log in to your DCD account after copying the SSH key to the clipboard (Link).
1. Open the SSH Key Manager: Menu > Management > SSH Keys
2. Select the + Add Key in the top left corner.
3. Paste the SSH key from the clipboard into the SSH Key field. If you have saved your SSH Key in a file, you can upload it by selecting the Choose file button in the Select Key file field.
Make sure the SSH keys you enter are valid. The DCD does not validate the syntax or format of the keys.
Optional: Select the Default checkbox to have the SSH key pre-selected when configuring SSH access.
4. Click Save to save the key. The SSH key has now been saved in the SSH Key Manager and is visible in the SSH Key Manager's table of keys.
You can connect to your Cubes instance via OpenSSH. Still, you will need the terminal application, which varies depending on your operating system. For:
Linux: Search Terminal or press CTRL+ALT+T
macOS: Search Terminal
Windows: Search Bash. If you don’t have Bash installed, use PuTTY instead.
The steps below will show you how to connect to your Cubes.
When you log in for the first time, the server isn't recognized on your local machine, so you'll be asked if you're sure you want to keep connecting. You can type yes and then press ENTER.
Authentication is the next step in the connection process. If you've added the SSH keys, you'll be able to connect to the Cubes immediately or after entering your key pair's passphrase.
If you haven't already added SSH keys, you'll be asked for your password:
Nothing is displayed in the terminal when you enter your password, making it easier to paste in the initial password. Pasting into text-based terminals is different from other desktop applications. It is also different from one window manager to another:
For Linux Gnome Terminal, use CTRL+SHIFT+V.
For macOS, use the SHIFT-CMD-V or a middle mouse button.
For Bash on Windows, right-click on the window bar, choose Edit, then Paste. You can also right-click to paste if you enable QuickEdit mode.
Once you’ve entered the password, press ENTER.
Components | Minimum | Maximum |
---|---|---|
Components | Minimum | Maximum |
---|---|---|
Name: Choose a name unique to this .
: The zone where you wish to physically host the vCPU. Choosing A - Auto selects a zone automatically. This setting can be changed after provisioning.
vCPUs: Specify the number of vCPUs. You may change these after provisioning. The capabilities are limited to your customer contract limits. For more information about the contract resource limits in DCD, see .
SSH Keys: Select premade . You must first have a key stored in the SSH Key Manager. For more information about how to create and add SSH Keys, see .
In this tab, you will find an overview of all assets belonging to the selected VDC. You can change vCPUs, RAM, vCPU Server status, and size without having to manually update each vCPU Server in the Workspace.
(Optional) Create a of the system for recovery in the event of problems.
When you no longer need the backups of a deleted vCPU Server, delete them manually from the to avoid unnecessary costs.
Enter your User Data either using a bash script or a cloud-config file with a YAML syntax. For sample scripts, see , , and .
Result: At boot, Cloud-Init executes automatically and applies the specified changes. The DCD returns a message when is complete, indicating that the infrastructure is virtually ready. However, bootstrapping, which includes the execution of cloud-init data, may require additional time. The message that DCD returns does not mention the additional time required for execution. We recommend allowing extra time for task completion before testing.
To test if the cloud-init bootstrapped your successfully, you can open the corresponding in your browser. You will be greeted with a “Hello World” message from your web server.
You can also bootstrap cloud-init images using cloud-config directives. The cloud-init website outlines all the supported and provides of basic directives.
Cloud-init is configured on the volume resource for cloud API V6 or later versions. For more information, see .
The public key is saved to the fileid_rsa.pub
which will be the key you upload to your account. Your private key is saved to the id_rsa
file in the .ssh
directory and is used to verify that the public key you use belongs to the same DCD account.
In addition to the SSH Keys stored in the , the IONOS Cloud Cubes SSH key concept includes:
Default keys are SSH keys that you intend to use frequently and have marked as such in the SSH Key Manager. When you configure storage devices, the are pre-selected. You can, however, specify which SSH keys are to be used before provisioning and deselect the preselected standard keys in favor of another SSH key.
Open the Terminal application and enter the SSH connection command below. After the @
, add the of your Cubes instance. Then press ENTER.
If the SSH key is configured correctly, this will log you into the .
Cores
1 core
62 cores
RAM
0,25 GB RAM
230 GB RAM*
NICs and storage
0 PCI connectors
24 PCI connectors
CD-ROM
0 CD-ROMs
2 CD-ROMs
Cores
1 core
51 cores
RAM
0,25 GB RAM
230 GB RAM*
NICs and storage
0 PCI connectors
24 PCI connectors
CD-ROM
0 CD-ROMs
2 CD-ROMs
Learn how to create and configure a Dedicated Core server inside of the DCD.
Learn how to create and configure a vCPU Server inside of the DCD.
Use the Remote Console to connect to Server instances without SSH.
Use Putty or OpenSSH to connect to Server instances.
Automate the creation of virtual instances with the cloud-init package.
Base64 | If the user data is base64 encoded, cloud-init verifies whether the decoded data is one of the supported types. It decodes and handles the decoded data appropriately if it comprehends it. If not, the base64 data is returned unaltered. |
User-Data Script | Begins with |
Include File | Begins with |
Cloud Config data | Begins with |
Upstart Job | Begins with |
Cloud Boothook | Begins with |
A vCPU Server that you create is a new virtual machine provisioned and hosted in one of IONOS physical data centers. A vCPU Server behaves exactly like physical servers and you can use them either standalone or in combination with other IONOS Cloud products.
You can create and configure your vCPU Server visually using the DCD interface. For more information, see Set Up a vCPU Server. However, the creation and management of a vCPU Server can be easily automated via the Cloud API, as well as our custom-made tools like SDKs.
vCPU Servers add a new dimension to your computing experience. These servers are configured with virtual CPUs and distributed among multiple users sharing the same physical server. The performance of your vCPU Server relies on various factors, including the underlying CPU of the physical server, virtual machine configurations, and the current load on the physical server. Our Data Center Dashboard (DCD) lets you closely monitor your CPU utilization and other essential metrics through the Monitoring Manager.
Boot options: For each vCPU Server, you can select to boot from a virtual CD-ROM/DVD drive or from a storage device (HDD or SSD) using any operating system on the platform. The only requirement is the use of KVM VirtIO drivers. IONOS provides a number of ready-to-boot images with current versions of Linux operating systems.
Secure your data, enhance reliability, and set up high-availability scenarios by deploying your vCPU Servers and storage devices across multiple Availability Zones allowing you to deploy your Shared vCPU instances in different geographic regions.
Assigning different Availability Zones ensures that vCPU Servers or storage devices reside on separate physical resources at IONOS. This helps ensure high availability and fault tolerance for your applications, as well as providing low-latency connections to your target audience.
For example, a vCPU Server or a storage device assigned to Availability Zone 1 resides on a different resource than a vCPU Server or storage device assigned to Availability Zone 2.
You have the following Availability Zone options:
Zone 1
Zone 2
A - Auto (default; our system automatically assigns an Availability Zone upon provisioning)
If the capacity of your Virtual Data Center (VDC) no longer matches your requirements, you can still increase or decrease your resources after provisioning. Upscaling resources allows you to change the resources of a vCPU Server without restarting it, permitting you to add RAM or NICs ("hot plug") to it while it is running. This change allows you to react to peak loads quickly without compromising performance.
After uploading, you can define the properties for your own images before applying them to new storage volumes. The settings must be supported by the image, otherwise, they will not work as expected. After provisioning, you can change the settings directly on the storage device, which will require a restart of the vCPU Server.
The types of resources that you can scale without rebooting will depend on the operating system of your vCPU Server. Since kernel 2.6.25, Linux has LVO modules installed by default, but you may have to activate them manually depending on the derivative. For more information, see Linux VirtIO.
For IONOS images, the supported properties are already preset. Without restarting the vCPU Server, its resources can be scaled as follows:
Upscaling: CPU, RAM, NICs, storage volumes
Downscaling: NICs, storage volumes
Scaling up is the increase or speed up of a component to handle a larger load. The goal is to increase the number of resources that support an application to achieve or maintain accurate performance. Scaling down means reducing system resources, whether or not you have used the scaling up approach. Without restarting the vCPU Server, only Upscaling is possible.
vCPU Server provides the following features:
Flexible Resource Allocation provides you with presets, which are recommended vCPU-to-RAM configurations for your virtual machines. Furthermore, this option empowers you to add or remove compute resources flexibly in order to meet your specific needs.
The Robust Compute Engine platform supports the vCPU servers, ensuring seamless integration. Additionally, the features offered by the Compute Engine platform remain accessible for utilization with vCPU servers
Virtualization Technology enables efficient and secure isolation between different virtual machines (VMs), ensuring the performance of one VM does not impact the others.
Reliable Performance and computing capabilities make it suitable for a wide range of applications. The underlying infrastructure is optimized to provide reliable CPU performance, ensuring your applications run smoothly.
Easy Management via the intuitive Data Center Designer. You can easily create, modify, and delete vCPU Servers, monitor their usage, and adjust the resources according to your needs.
vCPU Server provides the following benefits:
Cost-Effective: vCPU Server helps reduce costs when compared to major hyperscalers with similar resource configurations. This makes it an ideal choice for small to medium-sized businesses or individuals with budget constraints.
Scalability: With IONOS vCPU Server, you have the flexibility to scale your computing resources up or down based on your requirements. This ensures that you can meet the demands of your applications without overprovisioning or paying for unused resources.
Reliability and Availability: IONOS's cloud infrastructure ensures high availability and reliability. By distributing resources across multiple physical servers, IONOS minimizes the impact of hardware failures, providing a stable and resilient environment for your applications.
Easy Setup: Setting up IONOS vCPU Server is straightforward. The IONOS DCD and Cloud API offers controls for provisioning and configuring vCPU Servers, allowing you to get up and running quickly.
This section lists the limitations of vCPU Servers:
CPU Family of a vCPU Server cannot be chosen at the time of creation and cannot be changed later. vCPU Server configurations are subject to the following:
*Larger RAM sizes can be made available on request.
RAM Sizes: Because the working memory (RAM) size cannot be processed during the initial configuration, a newly provisioned vCPU Server with more than 8 GB of RAM may not start successfully when created from the IONOS Windows images.
Live Vertical Scaling: Linux supports the entire scope of IONOS Live Vertical Scaling, whereas Windows is limited to CPU scaling. Furthermore, it is not possible to use LVS to reduce storage size after provisioning.
Note: If the available account resources are not sufficient for your tasks, please contact our support team to increase resource limits for your account.
When creating storages based on IONOS Linux images, you can insert SSH keys into your VM. This lets you access your VM safely and allows for secure communication. SSH keys that you intend to use more often can be saved in the DCD's SSH Key Manager.
Note: IONOS Windows images do not support SSH key injection.
Default SSH keys: SSH keys that you intend to use often and mark them as such in the SSH Key Manager. Default SSH keys are preselected when you configure storage devices. You can specify which SSH keys are actually to be used before provisioning and deselecting the preselected standard keys in favor of another SSH key.
Ad-hoc SSH keys: SSH keys that you only use once and don't intend to save in the SSH Key Manager for later re-use.
SSH keys can be generated and used on macOS or Linux if both OpenSSH and the ssh-keygen command-line tools are installed. OpenSSH is a collection of tools for establishing SSH connections to remote servers, while ssh-keygen is a utility for generating SSH keys.
Manually generate SSH keys when working with OpenSSH via the Terminal application by following the steps below.
1. Enter the following command below into the Terminal window and press ENTER.
The key generation process is initiated by the command above. When you run this command, the ssh-keygen utility prompts you for a location to save the key.
2. Accept the default location by pressing the ENTER key, or enter the path to the file where you want to save the key /home/username/.ssh/id_rsa
.
If you have previously generated a key pair, you may see the following prompt below. If you choose to overwrite the key, you will no longer authenticate with the previous key that was generated.
3. Enter the passphrase that will be used to encrypt the private key file on the disk. You can also press ENTER to accept the default (no passphrase). However, we recommend that you use a passphrase.
4. Enter your passphrase once more.
After you confirm the passphrase, the public and private keys are generated and saved in the specified location. Thus, the confirmation will look like this:
The public key is saved to the file id_rsa.pub
which will be the key you upload to your DCD account. Your private key is saved to the id_rsa
file in the .ssh
directory and is used to verify that the public key you use belongs to the same DCD account.
You can copy the public key to your clipboard by running the following command:
In the SSH Key Manager of the DCD, you can save and manage up to 100 public SSH keys for the setup of SSH accesses. This saves you from having to repeatedly copy and paste the public part of an SSH key from an external source.
1. To open the SSH Key Manager, go to Menu > MANAGER resources > SSH Key Manager.
2. In the SSH Key Manager, select + Add Key.
3. Enter a Name and click Add.
4. Copy and paste the public key to the SSH key field. Alternatively, you may upload it via Select key file. Please ensure the SSH keys you enter are valid. The DCD does not validate syntax or format.
5. (Optional) Activate the Default checkbox to have the SSH key automatically pre-selected when SSH access is configured.
6. Click Save to store the key.
The SSH key is stored in the SSH Key Manager and can be used for the configuration of SSH accesses.
To delete an existing SSH key, select the SSH key from the list and click Delete Key.
The SSH key is removed from the SSH Key Manager.
You can connect to your virtual instance via OpenSSH. Still, you will need the terminal application, which varies depending on your operating system. For:
Linux: Search Terminal or press CTRL+ALT+T
macOS: Search Terminal
Windows: Search Bash. If you don’t have Bash installed, use PuTTY instead.
The steps below will show you how to connect to your VM.
1. Open the Terminal application and enter the SSH connection command below. After the @
, add the IP address of your VM instance. Then press ENTER.
Note: When you log in for the first time, the server isn't recognized on your local machine, so you'll be asked if you're sure you want to keep connecting. You can type yes and then press ENTER.
2. Authentication is the next step in the connection process. If you've added the SSH keys, you'll be able to connect to the VM immediately or after entering your key pair's passphrase.
If you haven't already added SSH keys, you'll be asked for your password:
3. Once you’ve entered the password, press ENTER.
If the SSH key is configured correctly, this will log you into VM.
Learn how to create and configure a Dedicated Core inside of the DCD. |
Learn how to create and configure a vCPU Server inside of the DCD. |
Use the Remote Console to connect to Server instances without SSH. |
Use Putty or OpenSSH to connect to Server instances. |
Automate the creation of virtual instances with the cloud-init package. |
Enable IPv6 support for Dedicated Core Servers and vCPU Servers. |
August 18
This is solely for informational purposes and does not require anything from you. IONOS has renamed Virtual Server(s) to Dedicated Core Server(s). This change does not impact the functionality of the product in any manner. As a result, the documentation portal now reflects the product name changes. For more information, see Product Renaming FAQs.
The user who creates the Dedicated Core server has full root or administrator access rights. A server, once provisioned, retains all its settings (resources, drive allocation, password, etc.), even after a restart at the operating system level. The server will only be removed from your Virtual Data Center once you delete a server in the DCD. For more information, see Dedicated Core Servers.
Prerequisites: Make sure you have the appropriate privileges. Only contract administrators, owners, or users with the Create Data Center privilege can set up a VDC. Other user types have read-only access and can't provision changes.
1. Drag the Dedicated Core server element from the Palette onto the Workspace.
The created Dedicated Core server is automatically highlighted in turquoise. The Inspector pane allows you to configure the properties of this individual server instance.
2. In the Inspector pane on the right, configure your server in the Settings tab.
Name: Choose a name unique to this VDC.
Availability Zone: The zone where you wish to physically host the server. Choosing A - Auto selects a zone automatically. This setting can be changed after provisioning.
CPU Architecture: Choose between AMD or Intel cores. You can later change the CPU type for a Dedicated Core server that is already running, though you will have to restart it first.
Cores: Specify the number of CPU cores. You may change these after provisioning. Note that there are configuration limits.
RAM: Specify RAM size; you may choose any size between 0.25 GB to 240 GB in steps of 0.25 GB. This setting can be increased after provisioning.
SSH Keys: Select premade SSH Key. You must first have a key stored in the SSH Key Manager. Learn how to create and add SSH Keys.
Ad-hoc Key: Copy and paste the public part of your SSH key into this field.
Drag a storage element (HDD or SSD) from the Palette onto a Dedicated Core server in the Workspace to connect them together. The highlighted VM will expand with a storage section.
Click the Unnamed HDD Storage to highlight the storage section. Now you can see new options in the Inspector pane on the right.
Storage type cannot be changed after provisioning.
Enter a name that is unique within your VDC.
Select a zone in which you want the storage device to be maintained. When you select A (Auto), our system assigns the optimal Zone. The Availability Zone cannot be changed after provisioning.
Specify the required storage capacity. You can increase the size after provisioning, even while the vCPU Server is running, as long as its operating system supports it. It is not possible to reduce the storage size after provisioning.
You can select one of IONOS images or snapshots, or use your own. Only images and snapshots that you have access to are available for selection. Since provisioning does not require you to specify an image, you can also create empty storage volumes.
Authentication
Set the root or administrator password for your Dedicated Core server according to the guidelines. This is recommended for both operating system types.
Select an SSH key stored in the SSH Key Manager.
Copy and paste the public part of your SSH key into this field.
Select the storage volume from which the Dedicated Core server is to boot by clicking on BOOT or Make Boot Device.
Provision your changes. The storage device is now provisioned and configured according to your settings.
Alternative Mode
When adding a storage element using the Inspector pane, select the appropriate check box in the Add Storage dialog box. If you wish to boot from the network, set this on the Dedicated Core server: Dedicated Core server in the Workspace > Inspector pane > Storage.
It is recommended to always use VirtIO to benefit from the full performance of InfiniBand. IDE is intended for troubleshooting if, for instance, the operating system has no VirtIO drivers installed. In this case, Windows usually displays a "blue screen" when booting.
After provisioning, the Live Vertical Scaling properties of the selected image are displayed. You can make changes to these properties later, which will require a reboot. You can set the properties of your uploaded images before you apply them to storage volumes in the Image Manager.
(Optional) Add and configure further storage elements.
(Optional) Make further changes to your data center.
Provision your changes. The storage device is now provisioned and configured according to your settings.
To assign an image and specify a boot device, you need to add and configure a storage element.
Click on CD-ROM to add a CD-ROM drive so that you can use ISO images to install and configure an operating system from scratch.
Set up a network by connecting the Dedicated Core server to other elements, such as an internet access element or other servers through their NICs.
Provision your changes.
The Dedicated Core server is available according to your settings.
We maintain dedicated resources available for each customer. You do not share your physical CPUs with other IONOS clients. For this reason, the servers switched off at the operating system level, still incur costs.
You should use the DCD to shut down virtual machines so that resources are completely deallocated, and no costs are incurred. Dedicated Core servers deallocated this way remain in your infrastructure while the resources are released and can then be redistributed.
This can only be done in the DCD. Shutting down a VM at the operating system level alone does not deallocate the resources or suspend the billing. Regardless of how the VM is shut down, it can only be restarted using the DCD.
A reset forces the Dedicated Core server to shut down and reboot but may result in data loss.
Stopping a VM will:
Suspend billing
Cut power to your VM
De-allocate any dynamically assigned IP address
1. Choose a Dedicated Core server. From the Settings tab in the Inspector pane, select Power > Stop.
2. In the dialog box that appears, confirm your action by selecting the appropriate checkbox and clicking Apply STOP.
3. Provision your changes. Confirm the action by entering your password.
1. Choose a Dedicated Core server. From the Settings tab in the Inspector pane, select Power > Start.
2. In the dialog box that appears, confirm your action by selecting the appropriate box and clicking Apply START.
3. Provision your changes. Confirm the action by entering your password.
Result: The Dedicated Core server is booted. A new public IP address is assigned depending on the configuration, and billing is resumed.
1. Choose a Dedicated Core server. From the Settings tab in the Inspector pane, select Power > Reset.
2. (Optional) In the dialog box that appears, connect using the Remote Console and shut down the VM at the operating system level to prevent data loss.
3. Confirm your action by selecting the appropriate box and clicking Apply RESET.
4. Provision your changes. Confirm the action by entering your password.
Result: The Dedicated Core server shuts down and reboots.
1. In the Workspace, select the required Dedicated Core server and use the Inspector pane on the right.
If you want to change multiple VMs, select the data center and change the properties in the Settings tab.
In this tab, you will find an overview of all assets belonging to the selected VDC. You can change cores, RAM, server status, and storage size without having to manually update each VM in the Workspace.
2. Modify storage:
(Optional) Create a snapshot of the system for recovery in the event of problems.
3. In the Workspace, select the required Dedicated Core server and increase the CPU size.
4. Provision your changes. You must set the new size at the operating system level of your VM.
Result: The size of the CPU is adjusted in the DCD.
When you no longer need a particular Dedicated Core server, with or without the associated storage devices, in your cloud infrastructure, you can remove it with a single mouse click or via the keyboard.
To ensure that no processes are interrupted and no data is lost, we recommend you turn off the Dedicated Core server before you delete it.
1. Select the Dedicated Core server in the Workspace.
2. Right-click and open the context menu of the element. Select Delete.
2. You may also select the element icon and press the DEL key.
3. In the dialog box that appears, choose whether you also want to delete storage devices that belong to the server.
4. Provision your changes.
Result: The Dedicated Core server and its storage devices are deleted.
When you delete a Dedicated Core server and its storage devices, or the entire data center, their backups are not deleted automatically. When you delete a Backup Unit, the associated backups are also deleted.
When you no longer need the backups of deleted VMs, delete them manually from the Backup Unit Manager to avoid unnecessary costs.
August 18
This is solely for informational purpose and does not require any action from you. IONOS has renamed Virtual Server(s) to Dedicated Core Server(s). This change does not impact the functionality of the product in any manner. As a result, the documentation portal now reflects the product name changes. For more information, see Product Renaming FAQs.
Dedicated Core Server configurations are subject to the following limits, according to the CPU type:
AMD CPU: Up to 62 cores and 230 GB RAM
Intel® CPU: Up to 51 Intel® cores and 230 GB RAM
A single Intel® physical core with Hyper-Threading Technology is exposed to the operating system of your Dedicated Core Servers as two distinct “logical cores”, which process separate threads.
Because the size of the working memory (RAM) cannot be processed during the initial configuration, newly provisioned servers with more than 8 GB of RAM may not start successfully when created from IONOS Windows images.
We recommend initially setting the RAM size to 8 GB; RAM size can then be scaled as needed after the initial provisioning and configuration.
Minimum: 1 GB
Maximum: 4 TB
Minimum: 1 GB
Maximum: 4 TB
You can scale up the HDD and SSD storage volumes on need basis.
IONOS data centers are divided into separate areas called Availability Zones.
You can enhance reliability and set up high-availability scenarios by deploying redundant Dedicated Core Servers and storage devices across multiple Availability Zones.
See also: Availability Zones
Select the server in the DCD Workspace
Use Inspector > Properties > Availability Zone menu to change the Availability Zone
Live Vertical Scaling (LVS) technology permits you to scale the number of CPU cores and amount of RAM while the server is running, without having to restart it. Please note that Windows only allows scaling the number of CPU cores, but not the amount of RAM. For scaling to more than eight CPU cores, Windows requires a reboot.
See also: Live Vertical Scaling
Steal time in a Virtual Machine (VM) refers to instances when the hypervisor, responsible for managing VMs and hardware, temporarily reallocates a portion of CPU cycles from dedicated cores to perform essential tasks like storage replication and firewall enforcement. While VMs may perceive this as "stolen processing time," it typically has a low impact on performance, especially with Dedicated Core servers. The IONOS Cloud platform prioritizes efficient resource management to ensure your VMs run smoothly.
Dedicated Core servers can be restarted at the operating system level (using the reboot command, for instance). You can also use the DCD reset function, which functions similarly to a physical server's reset button.
See also: Stop, Start or Reset a Dedicated Core Server
You should use the DCD to shut down your server completely. Your VM will then be marked as "shut down" in the DCD. Shutting down a VM at the operating system level alone does not deallocate its resources or suspend the billing.
See also: Stop, Start or Reset a Dedicated Core Server
You can delete a Dedicated Core server from the DCD Workspace by right-clicking on it and selecting Delete Server from the list, or by selecting the server and pressing the Del
key on your keyboard.
See also: Delete a Dedicated Core server
Try to connect to your VM using the Remote Console to see if it is up and running. If you have trouble logging on to your VM, please provide our support team with screenshots of error messages and prompts from the Remote Console.
Windows users: Please send us a screenshot of the Task Manager.
Linux users: Please send us the output of uptime
and top
.
When using IONOS-provided images, you set the passwords yourself prior to provisioning.
Newly provisioned servers with more than 8 GB of RAM may not start successfully when created from IONOS Windows images, because the RAM size cannot be processed during the initial configuration.
An error is displayed according to the server version; for example, Windows Server 2012 R2 displays the following message:
"Windows could not finish configuring the system. To attempt to resume configuration, restart the computer."
We recommend initially setting the RAM size to 8 GB, and rescaling it as needed after the initial provisioning and configuration is complete.
The choice of CPU architecture primarily depends on your workload and performance requirements. Intel® processors are oftentimes more powerful than AMD processors. Intel® processors are designed for compute-intensive applications and workloads where the benefits of hyperthreading and multitasking can be fully exploited. Intel® cores cost twice as much as AMD cores. Therefore, it is recommended that you measure and compare the actual performance of both CPU architectures against your own workload. You can change the CPU type in the DCD or use the API, and see for yourself whether Intel® processors deliver significant performance gains, or more economical AMD cores still meet your requirements.
With our unique "Core Technology Choice" feature, we are the only cloud computing provider that makes it possible to flexibly change the processor architecture per virtual instance.
When the cursor disappears after logging on to the Remote Console, you can reconnect to the server using the appropriate menu entry.
vCPU Server configurations are subject to the following limits:
Up to 120 cores and 512 GB RAM
A CPU Family of a vCPU server cannot be chosen at the time of creation and cannot be changed later.
A single Intel® physical core with Hyper-Threading Technology is exposed to the operating system of your vCPU Server as two distinct “logical cores”, which process separate threads.
Because the size of the working memory (RAM) cannot be processed during the initial configuration, newly provisioned servers with more than 8 GB of RAM may not start successfully when created from IONOS Windows images.
We recommend initially setting the RAM size to 8 GB; RAM size can then be scaled as needed after the initial provisioning and configuration.
Minimum: 1 GB
Maximum: 4 TB
Minimum: 1 GB
Maximum: 4 TB
You can scale up the HDD and SSD storage volumes on need basis.
IONOS data centers are divided into separate areas called Availability Zones.
You can enhance reliability and set up high-availability scenarios by deploying redundant vCPU Servers and storage devices across multiple Availability Zones.
See also: Availability Zones
Select the vCPU Server in the DCD Workspace.
Navigate to the Inspector pane > Properties > Availability Zone menu to change the Availability Zone.
Live Vertical Scaling (LVS) technology permits you to scale the number of CPU cores and amount of RAM while the server is running, without having to restart it. Please note that Windows only allows scaling the number of CPU cores, but not the amount of RAM. For scaling to more than eight CPU cores, Windows requires a reboot.
See also: Live Vertical Scaling
Servers can be restarted at the operating system level (using the reboot command, for instance). You can also use the DCD reset function, which functions similarly to a physical server's reset button.
See also: Stop, Start or Reset a Server
You should use the DCD to shut down your server completely. Your VM will then be marked as "shut down" in the DCD. Shutting down a VM at the operating system level alone does not deallocate its resources or suspend the billing.
See also: Starting, stopping, rebooting a server
You can delete a server from the DCD Workspace by right-clicking on it and selecting Delete Server from the list, or by selecting the server and pressing the Del
key on your keyboard.
See also: Deleting a server
Try to connect to your VM using the Remote Console to see if it is up and running. If you have trouble logging on to your VM, please provide our support team with screenshots of error messages and prompts from the Remote Console.
Windows users: Please send us a screenshot of the Task Manager.
Linux users: Please send us the output of uptime
and top
.
When using IONOS-provided images, you set the passwords yourself prior to provisioning.
Newly provisioned servers with more than 8 GB of RAM may not start successfully when created from IONOS Windows images, because the RAM size cannot be processed during the initial configuration.
An error is displayed according to the server version; for example, Windows Server 2012 R2 displays the following message:
"Windows could not finish configuring the system. To attempt to resume configuration, restart the computer."
We recommend initially setting the RAM size to 8 GB, and rescaling it as needed after the initial provisioning and configuration is complete.
A CPU Family of a vCPU server cannot be chosen at the time of creation and cannot be changed later.
When the cursor disappears after logging on to the Remote Console, you can reconnect to the server using the appropriate menu entry.
The device monitors VM/OS crashes. PVPanic is a simulated device, through which a guest panic event is sent to the hypervisor, and a QMP event is generated.
No, the PVPanic device is plug-and-play. However, installing drivers may require a restart.
This is no cause for concern. First of all, you do not need to reboot the VM. However, you will need to reinstall appropriate drivers (which are provided by IONOS Cloud).
There are no issues found when enabling pvpanic. However, users cannot choose whether or not to enable the device; it is always available for use.
Something else to consider - PVPanic does not offer bidirectional communication between the VM and the hypervisor. Instead, the communication only goes from the VM towards the hypervisor.
There are no special requirements or limitations to any components of a virtualized server. Therefore, PVPanic is completely compatible with AMD and Intel processors.
The PVPanic device is implemented as an ISA device (using IOPORT).
Check the kernel config CONFIG_PVPANIC
parameter.
For example:
m = PVPanic device is available as module y = PVPanic device is native available in the kernel n = PVPanic device is not available
When the device is not available (CONFIG_PVPANIC=n
), use another kernel or image.
For your virtual machines running Microsoft Windows, we provide an ISO image that includes all the relevant drivers for your instance. Just log into DCD, open your chosen virtual data center, add a CD-ROM drive and insert the driver ISO as shown below (this can also be done via CloudAPI).
Please note that a reboot is required to add the CD drive.
Once provisioning is complete, you can log into your OS by adding drivers for the unknown device through the Device Manager. Just enter devmgmt.msc
in the Windows search bar, console, or PowerShell to open it.
Since this is a Plug & Play driver, there is no need to reboot the machine.
Components | Minimum | Maximum |
---|---|---|
vCPU
1 vCPU
60 vCPUs
RAM
0,25 GB RAM
230 GB RAM*
NICs and storage
0 PCI connectors
24 PCI connectors
CD-ROM
0 CD-ROMs
2 CD-ROMs